Cable television is a system of delivering television programming to consumers via radio frequency (RF) signals transmitted through coaxial cables , or in more recent systems, light pulses through fibre-optic cables . This contrasts with broadcast television , in which the television signal is transmitted over-the-air by radio waves and received by a television antenna , or satellite television , in which the television signal is transmitted over-the-air by radio waves from a communications satellite and received by a satellite dish on the roof. FM radio programming, high-speed Internet , telephone services , and similar non-television services may also be provided through these cables. Analog television was standard in the 20th century, but since the 2000s, cable systems have been upgraded to digital cable operation.
186-461: Television ( TV ) is a telecommunication medium for transmitting moving images and sound. Additionally, the term can refer to a physical television set rather than the medium of transmission . Television is a mass medium for advertising, entertainment, news, and sports. The medium is capable of more than " radio broadcasting ," which refers to an audio signal sent to radio receivers . Television became available in crude experimental forms in
372-412: A thermionic tube or thermionic valve uses thermionic emission of electrons from a heated cathode for a number of fundamental electronic functions such as signal amplification and current rectification . The simplest vacuum tube, the diode invented in 1904 by John Ambrose Fleming , contains only a heated electron-emitting cathode and an anode. Electrons can only flow in one direction through
558-456: A patent interference suit against Farnsworth. The U.S. Patent Office examiner disagreed in a 1935 decision, finding priority of invention for Farnsworth against Zworykin. Farnsworth claimed that Zworykin's 1923 system could not produce an electrical image of the type to challenge his patent. Zworykin received a patent in 1928 for a color transmission version of his 1923 patent application. He also divided his original application in 1931. Zworykin
744-411: A radio broadcasting station , the station's large power amplifier is the transmitter and the broadcasting antenna is the interface between the power amplifier and the free space channel. The free space channel is the transmission medium and the receiver's antenna is the interface between the free space channel and the receiver. Next, the radio receiver is the destination of the radio signal, where it
930-473: A resolution that is substantially higher. HDTV may be transmitted in different formats: 1080p , 1080i and 720p . Since 2010, with the invention of smart television , Internet television has increased the availability of television programs and movies via the Internet through streaming video services such as Netflix, Amazon Prime Video , iPlayer and Hulu . In 2013, 79% of the world's households owned
1116-598: A transistor -based UHF tuner . The first fully transistorized color television in the United States was the Quasar television introduced in 1967. These developments made watching color television a more flexible and convenient proposition. In 1972, sales of color sets finally surpassed sales of black-and-white sets. Color broadcasting in Europe was not standardized on the PAL format until
1302-467: A tuner for receiving and decoding broadcast signals. A visual display device that lacks a tuner is correctly called a video monitor rather than a television. The television broadcasts are mainly a simplex broadcast meaning that the transmitter cannot receive and the receiver cannot transmit. The word television comes from Ancient Greek τῆλε (tele) 'far' and Latin visio 'sight'. The first documented usage of
1488-476: A 1925 demonstration, the image was dim, had low contrast and poor definition, and was stationary. Zworykin's imaging tube never got beyond the laboratory stage. However, RCA, which acquired the Westinghouse patent, asserted that the patent for Farnsworth's 1927 image dissector was written so broadly that it would exclude any other electronic imaging device. Thus, based on Zworykin's 1923 patent application, RCA filed
1674-403: A 2-inch-wide by 2.5-inch-high screen (5 by 6 cm). The large receiver had a screen 24 inches wide by 30 inches high (60 by 75 cm). Both sets could reproduce reasonably accurate, monochromatic, moving images. Along with the pictures, the sets received synchronized sound. The system transmitted images over two paths: first, a copper wire link from Washington to New York City, then
1860-399: A TV system with a 40-line resolution that employed a CRT display. This was the first working example of a fully electronic television receiver and Takayanagi's team later made improvements to this system parallel to other television developments. Takayanagi did not apply for a patent. In the 1930s, Allen B. DuMont made the first CRTs to last 1,000 hours of use, one of the factors that led to
2046-411: A better price for their goods. In Côte d'Ivoire , coffee growers share mobile phones to follow hourly variations in coffee prices and sell at the best price. On the macroeconomic scale, Lars-Hendrik Röller and Leonard Waverman suggested a causal link between good telecommunication infrastructure and economic growth. Few dispute the existence of a correlation although some argue it is wrong to view
SECTION 10
#17328478802012232-662: A camera tube, using the CRT instead as a flying-spot scanner to scan slides and film. Ardenne achieved his first transmission of television pictures on 24 December 1933, followed by test runs for a public television service in 1934. The world's first electronically scanned television service then started in Berlin in 1935, the Fernsehsender Paul Nipkow , culminating in the live broadcast of the 1936 Summer Olympic Games from Berlin to public places all over Germany. Philo Farnsworth gave
2418-438: A caveat for it in 1876. Gray abandoned his caveat and because he did not contest Bell's priority, the examiner approved Bell's patent on March 3, 1876. Gray had filed his caveat for the variable resistance telephone, but Bell was the first to document the idea and test it in a telephone.[88] Antonio Meucci invented a device that allowed the electrical transmission of voice over a line nearly 30 years before in 1849, but his device
2604-608: A color television combining a traditional black-and-white display with a rotating colored disk. This device was very "deep" but was later improved with a mirror folding the light path into an entirely practical device resembling a large conventional console. However, Baird was unhappy with the design, and, as early as 1944, had commented to a British government committee that a fully electronic device would be better. In 1939, Hungarian engineer Peter Carl Goldmark introduced an electro-mechanical system while at CBS , which contained an Iconoscope sensor. The CBS field-sequential color system
2790-407: A communal viewing experience to a solitary viewing experience. By 1960, Sony had sold over 4 million portable television sets worldwide. The basic idea of using three monochrome images to produce a color image had been experimented with almost as soon as black-and-white televisions had first been built. Although he gave no practical details, among the earliest published proposals for television
2976-441: A connection between two or more users. For both types of networks, repeaters may be necessary to amplify or recreate the signal when it is being transmitted over long distances. This is to combat attenuation that can render the signal indistinguishable from the noise. Another advantage of digital systems over analogue is that their output is easier to store in memory, i.e., two voltage states (high and low) are easier to store than
3162-495: A continuous range of states. Telecommunication has a significant social, cultural and economic impact on modern society. In 2008, estimates placed the telecommunication industry 's revenue at US$ 4.7 trillion or just under three per cent of the gross world product (official exchange rate). Several following sections discuss the impact of telecommunication on society. On the microeconomic scale, companies have used telecommunications to help build global business empires. This
3348-405: A dedicated analog circuit-switched service. Other advantages include better voice quality and integration to a Voice over Internet Protocol (VoIP) network providing cheap or unlimited nationwide and international calling. In many cases, digital cable telephone service is separate from cable modem service being offered by many cable companies and does not rely on Internet Protocol (IP) traffic or
3534-781: A fellow of the Royal Society (UK), published a letter in the scientific journal Nature in which he described how "distant electric vision" could be achieved by using a cathode-ray tube, or Braun tube, as both a transmitting and receiving device, he expanded on his vision in a speech given in London in 1911 and reported in The Times and the Journal of the Röntgen Society. In a letter to Nature published in October 1926, Campbell-Swinton also announced
3720-436: A given location, cable distribution lines must be available on the local utility poles or underground utility lines. Coaxial cable brings the signal to the customer's building through a service drop , an overhead or underground cable. If the subscriber's building does not have a cable service drop, the cable company will install one. The standard cable used in the U.S. is RG-6 , which has a 75 ohm impedance , and connects with
3906-543: A high elevation. At the outset, cable systems only served smaller communities without television stations of their own, and which could not easily receive signals from stations in cities because of distance or hilly terrain. In Canada, however, communities with their own signals were fertile cable markets, as viewers wanted to receive American signals. Rarely, as in the college town of Alfred, New York , U.S. cable systems retransmitted Canadian channels. Although early ( VHF ) television receivers could receive 12 channels (2–13),
SECTION 20
#17328478802014092-466: A higher rate. At the local headend, the feed signals from the individual television channels are received by dish antennas from communication satellites . Additional local channels, such as local broadcast television stations, educational channels from local colleges, and community access channels devoted to local governments ( PEG channels) are usually included on the cable service. Commercial advertisements for local business are also inserted in
4278-406: A higher-frequency signal (known as the " carrier wave ") before transmission. There are several different modulation schemes available to achieve this [two of the most basic being amplitude modulation (AM) and frequency modulation (FM)]. An example of this process is a disc jockey's voice being impressed into a 96 MHz carrier wave using frequency modulation (the voice would then be received on
4464-450: A key advantage of digital signals over analogue signals. However, digital systems fail catastrophically when noise exceeds the system's ability to autocorrect. On the other hand, analogue systems fail gracefully: as noise increases, the signal becomes progressively more degraded but still usable. Also, digital transmission of continuous data unavoidably adds quantization noise to the output. This can be reduced, but not eliminated, only at
4650-420: A lensed disk scanner with a 48-line resolution. He was granted U.S. Patent No. 1,544,156 (Transmitting Pictures over Wireless) on 30 June 1925 (filed 13 March 1922). Herbert E. Ives and Frank Gray of Bell Telephone Laboratories gave a dramatic demonstration of mechanical television on 7 April 1927. Their reflected-light television system included both small and large viewing screens. The small receiver had
4836-656: A line of the image. Although he never built a working model of the system, variations of Nipkow's spinning-disk " image rasterizer " became exceedingly common. Constantin Perskyi had coined the word television in a paper read to the International Electricity Congress at the International World Fair in Paris on 24 August 1900. Perskyi's paper reviewed the existing electromechanical technologies, mentioning
5022-405: A local VHF television station broadcast. Local broadcast channels were not usable for signals deemed to be a priority, but technology allowed low-priority signals to be placed on such channels by synchronizing their blanking intervals . TVs were unable to reconcile these blanking intervals and the slight changes due to travel through a medium, causing ghosting . The bandwidth of the amplifiers also
5208-513: A medium" dates from 1927. The term telly is more common in the UK. The slang term "the tube" or the "boob tube" derives from the bulky cathode-ray tube used on most TVs until the advent of flat-screen TVs . Another slang term for the TV is "idiot box." Facsimile transmission systems for still photographs pioneered methods of mechanical scanning of images in the early 19th century. Alexander Bain introduced
5394-463: A microwave-based system, may be used instead. Coaxial cables are capable of bi-directional carriage of signals as well as the transmission of large amounts of data . Cable television signals use only a portion of the bandwidth available over coaxial lines. This leaves plenty of space available for other digital services such as cable internet , cable telephony and wireless services, using both unlicensed and licensed spectra. Broadband internet access
5580-792: A new international frequency list and used in conformity with the Radio Regulation". According to the ITU's Radio Regulations adopted in Atlantic City, all frequencies referenced in the International Frequency Registration Board , examined by the board and registered on the International Frequency List "shall have the right to international protection from harmful interference". From a global perspective, there have been political debates and legislation regarding
5766-437: A person's age, interests, sexual preference and relationship status. In this way, these sites can play important role in everything from organising social engagements to courtship . Prior to social networking sites, technologies like short message service (SMS) and the telephone also had a significant impact on social interactions. In 2000, market research group Ipsos MORI reported that 81% of 15- to 24-year-old SMS users in
Television - Misplaced Pages Continue
5952-442: A phosphor plate. The phosphor was patterned so the electrons from the guns only fell on one side of the patterning or the other. Using cyan and magenta phosphors, a reasonable limited-color image could be obtained. He also demonstrated the same system using monochrome signals to produce a 3D image (called " stereoscopic " at the time). A demonstration on 16 August 1944 was the first example of a practical color television system. Work on
6138-466: A production model was halted by the SCAP after World War II . Because only a limited number of holes could be made in the disks, and disks beyond a certain diameter became impractical, image resolution on mechanical television broadcasts was relatively low, ranging from about 30 lines up to 120 or so. Nevertheless, the image quality of 30-line transmissions steadily improved with technical advances, and by 1933
6324-501: A projection screen at London's Dominion Theatre . Mechanically scanned color television was also demonstrated by Bell Laboratories in June 1929 using three complete systems of photoelectric cells , amplifiers, glow-tubes, and color filters, with a series of mirrors to superimpose the red, green, and blue images into one full-color image. The first practical hybrid system was again pioneered by John Logie Baird. In 1940 he publicly demonstrated
6510-491: A radio as the channel "96 FM"). In addition, modulation has the advantage that it may use frequency division multiplexing (FDM). A telecommunications network is a collection of transmitters, receivers, and communications channels that send messages to one another. Some digital communications networks contain one or more routers that work together to transmit information to the correct user. An analogue communications network consists of one or more switches that establish
6696-591: A radio link from Whippany, New Jersey . Comparing the two transmission methods, viewers noted no difference in quality. Subjects of the telecast included Secretary of Commerce Herbert Hoover . A flying-spot scanner beam illuminated these subjects. The scanner that produced the beam had a 50-aperture disk. The disc revolved at a rate of 18 frames per second, capturing one frame about every 56 milliseconds . (Today's systems typically transmit 30 or 60 frames per second, or one frame every 33.3 or 16.7 milliseconds, respectively.) Television historian Albert Abramson underscored
6882-553: A rarity, found in an ever-dwindling number of markets. Analog television sets are accommodated, their tuners mostly obsolete and dependent entirely on the set-top box. Cable television is mostly available in North America , Europe , Australia , Asia and South America . Cable television has had little success in Africa , as it is not cost-effective to lay cables in sparsely populated areas. Multichannel multipoint distribution service ,
7068-407: A receiver box. The cable company will provide set-top boxes based on the level of service a customer purchases, from basic set-top boxes with a standard-definition picture connected through the standard coaxial connection on the TV, to high-definition wireless digital video recorder (DVR) receivers connected via HDMI or component . Older analog television sets are cable ready and can receive
7254-591: A resolution that was not surpassed until May 1932 by RCA, with 120 lines. On 25 December 1926, Kenjiro Takayanagi demonstrated a television system with a 40-line resolution that employed a Nipkow disk scanner and CRT display at Hamamatsu Industrial High School in Japan. This prototype is still on display at the Takayanagi Memorial Museum in Shizuoka University , Hamamatsu Campus. His research in creating
7440-578: A series of signal amplifiers and line extenders. These devices carry the signal to customers via passive RF devices called taps. The very first cable networks were operated locally, notably in 1936 by Rediffusion in London in the United Kingdom and the same year in Berlin in Germany, notably for the Olympic Games , and from 1948 onwards in the United States and Switzerland. This type of local cable network
7626-469: A service that operated for a year until the gap in the telegraph link was closed. In the Middle Ages, chains of beacons were commonly used on hilltops as a means of relaying a signal. Beacon chains suffered the drawback that they could only pass a single bit of information, so the meaning of the message such as "the enemy has been sighted" had to be agreed upon in advance. One notable instance of their use
Television - Misplaced Pages Continue
7812-622: A signal reportedly to the 60th power or better and showed great promise in all fields of electronics. Unfortunately, an issue with the multipactor was that it wore out at an unsatisfactory rate. At the Berlin Radio Show in August 1931 in Berlin , Manfred von Ardenne gave a public demonstration of a television system using a CRT for both transmission and reception, the first completely electronic television transmission. However, Ardenne had not developed
7998-417: A special telephone interface at the customer's premises that converts the analog signals from the customer's in-home wiring into a digital signal, which is then sent on the local loop (replacing the analog last mile , or plain old telephone service (POTS) to the company's switching center, where it is connected to the public switched telephone network ( PSTN ). The biggest obstacle to cable telephone service
8184-410: A static photocell. The thallium sulfide (Thalofide) cell, developed by Theodore Case in the U.S., detected the light reflected from the subject and converted it into a proportional electrical signal. This was transmitted by AM radio waves to a receiver unit, where the video signal was applied to a neon light behind a second Nipkow disk rotating synchronized with the first. The brightness of the neon lamp
8370-457: A system that used a mechanical mirror-drum scanner to transmit, in Zworykin's words, "very crude images" over wires to the " Braun tube" ( cathode-ray tube or "CRT") in the receiver. Moving images were not possible because, in the scanner: "the sensitivity was not enough and the selenium cell was very laggy". In 1921, Édouard Belin sent the first image via radio waves with his belinograph . By
8556-411: A telephone network, the caller is connected to the person to whom they wish to talk by switches at various telephone exchanges . The switches form an electrical connection between the two users and the setting of these switches is determined electronically when the caller dials the number. Once the connection is made, the caller's voice is transformed to an electrical signal using a small microphone in
8742-488: A television set. The replacement of earlier cathode-ray tube (CRT) screen displays with compact, energy-efficient, flat-panel alternative technologies such as LCDs (both fluorescent-backlit and LED ), OLED displays, and plasma displays was a hardware revolution that began with computer monitors in the late 1990s. Most television sets sold in the 2000s were still CRT , it was only in early 2010s that flat-screen TVs decisively overtook CRT. Major manufacturers announced
8928-479: A television system using fully electronic scanning and display elements and employing the principle of "charge storage" within the scanning (or "camera") tube. The problem of low sensitivity to light resulting in low electrical output from transmitting or "camera" tubes would be solved with the introduction of charge-storage technology by Kálmán Tihanyi beginning in 1924. His solution was a camera tube that accumulated and stored electrical charges ("photoelectrons") within
9114-605: A type F connector . The cable company's portion of the wiring usually ends at a distribution box on the building exterior, and built-in cable wiring in the walls usually distributes the signal to jacks in different rooms to which televisions are connected. Multiple cables to different rooms are split off the incoming cable with a small device called a splitter . There are two standards for cable television; older analog cable, and newer digital cable which can carry data signals used by digital television receivers such as high-definition television (HDTV) equipment. All cable companies in
9300-412: A version of the electrical telegraph that he unsuccessfully demonstrated on September 2, 1837. His code was an important advance over Wheatstone's signaling method. The first transatlantic telegraph cable was successfully completed on July 27, 1866, allowing transatlantic telecommunication for the first time. The conventional telephone was patented by Alexander Bell in 1876. Elisha Gray also filed
9486-422: Is achieved over coaxial cable by using cable modems to convert the network data into a type of digital signal that can be transferred over coaxial cable. One problem with some cable systems is the older amplifiers placed along the cable routes are unidirectional thus in order to allow for uploading of data the customer would need to use an analog telephone modem to provide for the upstream connection. This limited
SECTION 50
#17328478802019672-577: Is adapted from the French, because its written use was recorded in 1904 by the French engineer and novelist Édouard Estaunié . Communication was first used as an English word in the late 14th century. It comes from Old French comunicacion (14c., Modern French communication), from Latin communicationem (nominative communication), noun of action from past participle stem of communicare, "to share, divide out; communicate, impart, inform; join, unite, participate in," literally, "to make common", from communis". At
9858-671: Is called point-to-point communication because it occurs between a transmitter and a receiver. Telecommunication through radio broadcasts is called broadcast communication because it occurs between a powerful transmitter and numerous low-power but sensitive radio receivers. Telecommunications in which multiple transmitters and multiple receivers have been designed to cooperate and share the same physical channel are called multiplex systems . The sharing of physical channels using multiplexing often results in significant cost reduction. Multiplexed systems are laid out in telecommunication networks and multiplexed signals are switched at nodes through to
10044-451: Is called (in the jargon of the field) " quadrature amplitude modulation " (QAM) that are used in high-capacity digital radio communication systems. Modulation can also be used to transmit the information of low-frequency analogue signals at higher frequencies. This is helpful because low-frequency analogue signals cannot be effectively transmitted over free space. Hence the information from a low-frequency analogue signal must be impressed into
10230-434: Is commonly called "keying" —a term derived from the older use of Morse Code in telecommunications—and several keying techniques exist (these include phase-shift keying , frequency-shift keying , and amplitude-shift keying ). The " Bluetooth " system, for example, uses phase-shift keying to exchange information between various devices. In addition, there are combinations of phase-shift keying and amplitude-shift keying which
10416-794: Is converted from electricity to sound. Telecommunication systems are occasionally "duplex" (two-way systems) with a single box of electronics working as both the transmitter and a receiver, or a transceiver (e.g., a mobile phone ). The transmission electronics and the receiver electronics within a transceiver are quite independent of one another. This can be explained by the fact that radio transmitters contain power amplifiers that operate with electrical powers measured in watts or kilowatts, but radio receivers deal with radio powers measured in microwatts or nanowatts . Hence, transceivers have to be carefully designed and built to isolate their high-power circuitry and their low-power circuitry from each other to avoid interference. Telecommunication over fixed lines
10602-481: Is degraded by undesirable noise . Commonly, the noise in a communication system can be expressed as adding or subtracting from the desirable signal via a random process . This form of noise is called additive noise , with the understanding that the noise can be negative or positive at different instances. Unless the additive noise disturbance exceeds a certain threshold, the information contained in digital signals will remain intact. Their resistance to noise represents
10788-609: Is self-evident in the case of online retailer Amazon.com but, according to academic Edward Lenert, even the conventional retailer Walmart has benefited from better telecommunication infrastructure compared to its competitors. In cities throughout the world, home owners use their telephones to order and arrange a variety of home services ranging from pizza deliveries to electricians. Even relatively poor communities have been noted to use telecommunication to their advantage. In Bangladesh 's Narsingdi District , isolated villagers use cellular phones to speak directly to wholesalers and arrange
10974-448: Is separated from its adjacent stations by 200 kHz, and the difference between 200 kHz and 180 kHz (20 kHz) is an engineering allowance for the imperfections in the communication system. In the example above, the "free space channel" has been divided into communications channels according to frequencies , and each channel is assigned a separate frequency bandwidth in which to broadcast radio waves. This system of dividing
11160-449: Is the informational equivalent of two newspaper pages per person per day in 1986, and six entire newspapers per person per day by 2007. Given this growth, telecommunications play an increasingly important role in the world economy and the global telecommunications industry was about a $ 4.7 trillion sector in 2012. The service revenue of the global telecommunications industry was estimated to be $ 1.5 trillion in 2010, corresponding to 2.4% of
11346-482: Is the need for nearly 100% reliable service for emergency calls. One of the standards available for digital cable telephony, PacketCable , seems to be the most promising and able to work with the quality of service (QOS) demands of traditional analog plain old telephone service (POTS) service. The biggest advantage to digital cable telephone service is similar to the advantage of digital cable, namely that data can be compressed, resulting in much less bandwidth used than
SECTION 60
#173284788020111532-509: The 1939 New York World's Fair . On the other hand, in 1934, Zworykin shared some patent rights with the German licensee company Telefunken. The "image iconoscope" ("Superikonoskop" in Germany) was produced as a result of the collaboration. This tube is essentially identical to the super-Emitron. The production and commercialization of the super-Emitron and image iconoscope in Europe were not affected by
11718-488: The DVB-C , DVB-C2 stream to IP for distribution of TV over IP network in the home. Many cable companies offer internet access through DOCSIS . In the most common system, multiple television channels (as many as 500, although this varies depending on the provider's available channel capacity) are distributed to subscriber residences through a coaxial cable , which comes from a trunkline supported on utility poles originating at
11904-722: The EMI engineering team led by Isaac Shoenberg applied in 1932 for a patent for a new device they called "the Emitron", which formed the heart of the cameras they designed for the BBC. On 2 November 1936, a 405-line broadcasting service employing the Emitron began at studios in Alexandra Palace and transmitted from a specially built mast atop one of the Victorian building's towers. It alternated briefly with Baird's mechanical system in adjoining studios but
12090-756: The Nipkow disk by Paul Nipkow and thus became known as the mechanical television . It formed the basis of experimental broadcasts done by the British Broadcasting Corporation beginning on 30 September 1929. However, for most of the 20th century, televisions depended on the cathode ray tube invented by Karl Ferdinand Braun . The first version of such a television to show promise was produced by Philo Farnsworth and demonstrated to his family on 7 September 1927. After World War II, interrupted experiments resumed and television became an important home entertainment broadcast medium. The type of device known as
12276-611: The high band 7–13 of North American television frequencies . Some operators as in Cornwall, Ontario , used a dual distribution network with Channels 2–13 on each of the two cables. During the 1980s, United States regulations not unlike public, educational, and government access (PEG) created the beginning of cable-originated live television programming. As cable penetration increased, numerous cable-only TV stations were launched, many with their own news bureaus that could provide more immediate and more localized content than that provided by
12462-422: The patent war between Zworykin and Farnsworth because Dieckmann and Hell had priority in Germany for the invention of the image dissector, having submitted a patent application for their Lichtelektrische Bildzerlegerröhre für Fernseher ( Photoelectric Image Dissector Tube for Television ) in Germany in 1925, two years before Farnsworth did the same in the United States. The image iconoscope (Superikonoskop) became
12648-440: The spark gap transmitter for radio or mechanical computers for computing, it was the invention of the thermionic vacuum tube that made these technologies widespread and practical, leading to the creation of electronics . In the 1940s, the invention of semiconductor devices made it possible to produce solid-state devices, which are smaller, cheaper, and more efficient, reliable, and durable than thermionic tubes. Starting in
12834-401: The "Iconoscope" by Zworykin, the new tube had a light sensitivity of about 75,000 lux , and thus was claimed to be much more sensitive than Farnsworth's image dissector. However, Farnsworth had overcome his power issues with his Image Dissector through the invention of a completely unique " Multipactor " device that he began work on in 1930, and demonstrated in 1931. This small tube could amplify
13020-418: The 1920s, but only after several years of further development was the new technology marketed to consumers. After World War II , an improved form of black-and-white television broadcasting became popular in the United Kingdom and the United States, and television sets became commonplace in homes, businesses, and institutions. During the 1950s, television was the primary medium for influencing public opinion . In
13206-652: The 1920s, when amplification made television practical, Scottish inventor John Logie Baird employed the Nipkow disk in his prototype video systems. On 25 March 1925, Baird gave the first public demonstration of televised silhouette images in motion at Selfridges 's department store in London . Since human faces had inadequate contrast to show up on his primitive system, he televised a ventriloquist's dummy named "Stooky Bill," whose painted face had higher contrast, talking and moving. By 26 January 1926, he had demonstrated before members of
13392-671: The 1932 Plenipotentiary Telegraph Conference and the International Radiotelegraph Conference in Madrid, the two organizations merged to form the International Telecommunication Union (ITU). They defined telecommunication as "any telegraphic or telephonic communication of signs, signals, writing, facsimiles and sounds of any kind, by wire, wireless or other systems or processes of electric signaling or visual signaling (semaphores)." The definition
13578-421: The 1960s, and broadcasts did not start until 1967. By this point, many of the technical issues in the early sets had been worked out, and the spread of color sets in Europe was fairly rapid. By the mid-1970s, the only stations broadcasting in black-and-white were a few high-numbered UHF stations in small markets and a handful of low-power repeater stations in even smaller markets such as vacation spots. By 1979, even
13764-492: The 1970s. In the 1960s, Paul Baran and, independently, Donald Davies started to investigate packet switching , a technology that sends a message in portions to its destination asynchronously without passing it through a centralized mainframe . A four-node network emerged on 5 December 1969, constituting the beginnings of the ARPANET , which by 1981 had grown to 213 nodes . ARPANET eventually merged with other networks to form
13950-660: The Dutch company Philips produced and commercialized the image iconoscope and multicon from 1952 to 1958. U.S. television broadcasting, at the time, consisted of a variety of markets in a wide range of sizes, each competing for programming and dominance with separate technology until deals were made and standards agreed upon in 1941. RCA, for example, used only Iconoscopes in the New York area, but Farnsworth Image Dissectors in Philadelphia and San Francisco. In September 1939, RCA agreed to pay
14136-625: The Farnsworth Television and Radio Corporation royalties over the next ten years for access to Farnsworth's patents. With this historic agreement in place, RCA integrated much of what was best about the Farnsworth Technology into their systems. In 1941, the United States implemented 525-line television. Electrical engineer Benjamin Adler played a prominent role in the development of television. The world's first 625-line television standard
14322-461: The ITU was able to compile an index that measures the overall ability of citizens to access and use information and communication technologies. Using this measure, Sweden, Denmark and Iceland received the highest ranking while the African countries Niger , Burkina Faso and Mali received the lowest. Telecommunication has played a significant role in social relationships. Nevertheless, devices like
14508-675: The Internet. While Internet development was a focus of the Internet Engineering Task Force (IETF) who published a series of Request for Comments documents, other networking advancements occurred in industrial laboratories , such as the local area network (LAN) developments of Ethernet (1983), Token Ring (1984) and Star network topology. The effective capacity to exchange information worldwide through two-way telecommunication networks grew from 281 petabytes (PB) of optimally compressed information in 1986 to 471 PB in 1993 to 2.2 exabytes (EB) in 2000 to 65 EB in 2007. This
14694-461: The Royal Institution the transmission of an image of a face in motion by radio. This is widely regarded as the world's first true public television demonstration, exhibiting light, shade, and detail. Baird's system used the Nipkow disk for both scanning the image and displaying it. A brightly illuminated subject was placed in front of a spinning Nipkow disk set with lenses that swept images across
14880-553: The Science Museum, South Kensington. In 1928, Baird's company (Baird Television Development Company/Cinema Television) broadcast the first transatlantic television signal between London and New York and the first shore-to-ship transmission. In 1929, he became involved in the first experimental mechanical television service in Germany. In November of the same year, Baird and Bernard Natan of Pathé established France's first television company, Télévision- Baird -Natan. In 1931, he made
15066-457: The Telechrome continued, and plans were made to introduce a three-gun version for full color. However, Baird's untimely death in 1946 ended the development of the Telechrome system. Similar concepts were common through the 1940s and 1950s, differing primarily in the way they re-combined the colors generated by the three guns. The Geer tube was similar to Baird's concept but used small pyramids with
15252-557: The UK broadcasts using the Baird system were remarkably clear. A few systems ranging into the 200-line region also went on the air. Two of these were the 180-line system that Compagnie des Compteurs (CDC) installed in Paris in 1935 and the 180-line system that Peck Television Corp. started in 1935 at station VE9AK in Montreal . The advancement of all-electronic television (including image dissectors and other camera tubes and cathode-ray tubes for
15438-442: The United Kingdom had used the service to coordinate social arrangements and 42% to flirt. In cultural terms, telecommunication has increased the public's ability to access music and film. With television, people can watch films they have not seen before in their own home without having to travel to the video store or cinema. With radio and the Internet, people can listen to music they have not heard before without having to travel to
15624-485: The United States have switched to or are in the course of switching to digital cable television since it was first introduced in the late 1990s. Most cable companies require a set-top box ( cable converter box ) or a slot on one's TV set for conditional access module cards to view their cable channels, even on newer televisions with digital cable QAM tuners, because most digital cable channels are now encrypted, or scrambled , to reduce cable service theft . A cable from
15810-692: The United States was spent on media that depend upon telecommunication. Many countries have enacted legislation which conforms to the International Telecommunication Regulations established by the International Telecommunication Union (ITU), which is the "leading UN agency for information and communication technology issues". In 1947, at the Atlantic City Conference, the ITU decided to "afford international protection to all frequencies registered in
15996-459: The analog and channel-separated signals used by analog television . Due to data compression , digital television can support more than one program in the same channel bandwidth. It is an innovative service that represents the most significant evolution in television broadcast technology since color television emerged in the 1950s. Digital television's roots have been tied very closely to the availability of inexpensive, high performance computers . It
16182-404: The basic selection. By subscribing to additional tiers, customers could get specialty channels, movie channels, and foreign channels. Large cable companies used addressable descramblers to limit access to premium channels for customers not subscribing to higher tiers, however the above magazines often published workarounds for that technology as well. During the 1990s, the pressure to accommodate
16368-563: The cable box itself, these midband channels were used for early incarnations of pay TV , e.g. The Z Channel (Los Angeles) and HBO but transmitted in the clear i.e. not scrambled as standard TV sets of the period could not pick up the signal nor could the average consumer de-tune the normal stations to be able to receive it. Once tuners that could receive select mid-band and super-band channels began to be incorporated into standard television sets, broadcasters were forced to either install scrambling circuitry or move these signals further out of
16554-429: The cable company's local distribution facility, called the headend . Many channels can be transmitted through one coaxial cable by a technique called frequency division multiplexing . At the headend, each television channel is translated to a different frequency . By giving each channel a different frequency slot on the cable, the separate television signals do not interfere with each other. At an outdoor cable box on
16740-515: The cable to send data from the customer box to the cable headend, for advanced features such as requesting pay-per-view shows or movies, cable internet access , and cable telephone service . The downstream channels occupy a band of frequencies from approximately 50 MHz to 1 GHz, while the upstream channels occupy frequencies of 5 to 42 MHz. Subscribers pay with a monthly fee. Subscribers can choose from several levels of service, with premium packages including more channels but costing
16926-488: The caller's handset . This electrical signal is then sent through the network to the user at the other end where it is transformed back into sound by a small speaker in that person's handset. Cable television A cable channel (sometimes known as a cable network ) is a television network available via cable television. Many of the same channels are distributed through satellite television . Alternative terms include non-broadcast channel or programming service ,
17112-675: The case of no local CBS or ABC station being available – rebroadcast the programming from a nearby affiliate but fill in with its own news and other community programming to suit its own locale. Many live local programs with local interests were subsequently created all over the United States in most major television markets in the early 1980s. This evolved into today's many cable-only broadcasts of diverse programming, including cable-only produced television movies and miniseries . Cable specialty channels , starting with channels oriented to show movies and large sporting or performance events, diversified further, and narrowcasting became common. By
17298-498: The chosen channel into the TV set on Channel 2, 3 or 4. Initially, UHF broadcast stations were at a disadvantage because the standard TV sets in use at the time were unable to receive their channels. With the passage of the All-Channel Receiver Act in 1964, all new television sets were required to include a UHF tuner, nonetheless, it would still take a few years for UHF stations to become competitive. Before being added to
17484-462: The convenience of remote retrieval, the storage of television and video programming now also occurs on the cloud (such as the video-on-demand service by Netflix ). At the beginning of the 2010s, digital television transmissions greatly increased in popularity. Another development was the move from standard-definition television (SDTV) ( 576i , with 576 interlaced lines of resolution and 480i ) to high-definition television (HDTV), which provides
17670-437: The correct destination terminal receiver. Communications can be encoded as analogue or digital signals , which may in turn be carried by analogue or digital communication systems. Analogue signals vary continuously with respect to the information, while digital signals encode information as a set of discrete values (e.g., a set of ones and zeroes). During propagation and reception, information contained in analogue signals
17856-500: The definition. Many transmission media have been used for telecommunications throughout history, from smoke signals , beacons , semaphore telegraphs , signal flags , and optical heliographs to wires and empty space made to carry electromagnetic signals. These paths of transmission may be divided into communication channels for multiplexing , allowing for a single medium to transmit several concurrent communication sessions . Several methods of long-distance communication before
18042-495: The design of RCA 's " iconoscope " in 1931, the U.S. patent for Tihanyi's transmitting tube would not be granted until May 1939. The patent for his receiving tube had been granted the previous October. Both patents had been purchased by RCA prior to their approval. Charge storage remains a basic principle in the design of imaging devices for television to the present day. On 25 December 1926, at Hamamatsu Industrial High School in Japan, Japanese inventor Kenjiro Takayanagi demonstrated
18228-514: The development of HDTV technology, the MUSE analog format proposed by NHK , a Japanese company, was seen as a pacesetter that threatened to eclipse U.S. electronics companies' technologies. Until June 1990, the Japanese MUSE standard, based on an analog system, was the front-runner among the more than 23 other technical concepts under consideration. Then, a U.S. company, General Instrument, demonstrated
18414-511: The development of optical fibre. The Internet , a technology independent of any given medium, has provided global access to services for individual users and further reduced location and time limitations on communications. Telecommunication is a compound noun of the Greek prefix tele- (τῆλε), meaning distant , far off , or afar , and the Latin verb communicare , meaning to share . Its modern use
18600-537: The device—from the cathode to the anode. Adding one or more control grids within the tube enables the current between the cathode and anode to be controlled by the voltage on the grid or grids. These devices became a key component of electronic circuits for the first half of the 20th century and were crucial to the development of radio, television, radar, sound recording and reproduction , long-distance telephone networks, and analogue and early digital computers . While some applications had used earlier technologies such as
18786-528: The discontinuation of CRT, Digital Light Processing (DLP), plasma, and even fluorescent-backlit LCDs by the mid-2010s. LEDs are being gradually replaced by OLEDs. Also, major manufacturers have started increasingly producing smart TVs in the mid-2010s. Smart TVs with integrated Internet and Web 2.0 functions became the dominant form of television by the late 2010s. Television signals were initially distributed only as terrestrial television using high-powered radio-frequency television transmitters to broadcast
18972-422: The electrical telegraph, the last commercial line was abandoned in 1880. On July 25, 1837, the first commercial electrical telegraph was demonstrated by English inventor Sir William Fothergill Cooke and English scientist Sir Charles Wheatstone . Both inventors viewed their device as "an improvement to the [existing] electromagnetic telegraph" and not as a new device. Samuel Morse independently developed
19158-403: The expense of increasing the channel bandwidth requirement. The term "channel" has two different meanings. In one meaning, a channel is the physical medium that carries a signal between the transmitter and the receiver. Examples of this include the atmosphere for sound communications, glass optical fibres for some kinds of optical communications , coaxial cables for communications by way of
19344-421: The extra information in the signal and produce a limited-resolution color display. The higher-resolution black-and-white and lower-resolution color images combine in the brain to produce a seemingly high-resolution color image. The NTSC standard represented a significant technical achievement. The first color broadcast (the first episode of the live program The Marriage ) occurred on 8 July 1954. However, during
19530-418: The facsimile machine between 1843 and 1846. Frederick Bakewell demonstrated a working laboratory version in 1851. Willoughby Smith discovered the photoconductivity of the element selenium in 1873. As a 23-year-old German university student, Paul Julius Gottlieb Nipkow proposed and patented the Nipkow disk in 1884 in Berlin . This was a spinning disk with a spiral pattern of holes, so each hole scanned
19716-415: The fact that the descrambling circuitry was for a time present in these tuners, depriving the cable operator of much of their revenue, such cable-ready tuners are rarely used now – requiring a return to the set-top boxes used from the 1970s onward. The digital television transition in the United States has put all signals, broadcast and cable, into digital form, rendering analog cable television service
19902-453: The first decade of the 20th century, a revolution in wireless communication began with breakthroughs including those made in radio communications by Guglielmo Marconi , who won the 1909 Nobel Prize in Physics . Other early pioneers in electrical and electronic telecommunications include co-inventors of the telegraph Charles Wheatstone and Samuel Morse , numerous inventors and developers of
20088-438: The first outdoor remote broadcast of The Derby . In 1932, he demonstrated ultra-short wave television. Baird's mechanical system reached a peak of 240 lines of resolution on BBC telecasts in 1936, though the mechanical system did not scan the televised scene directly. Instead, a 17.5 mm film was shot, rapidly developed, and then scanned while the film was still wet. A U.S. inventor, Charles Francis Jenkins , also pioneered
20274-431: The following ten years, most network broadcasts and nearly all local programming continued to be black-and-white. It was not until the mid-1960s that color sets started selling in large numbers, due in part to the color transition of 1965, in which it was announced that over half of all network prime-time programming would be broadcast in color that fall. The first all-color prime-time season came just one year later. In 1972,
20460-454: The growing array of offerings resulted in digital transmission that made more efficient use of the VHF signal capacity; fibre optics was common to carry signals into areas near the home, where coax could carry higher frequencies over the short remaining distance. Although for a time in the 1980s and 1990s, television receivers and VCRs were equipped to receive the mid-band and super-band channels. Due to
20646-450: The headend, the electrical signal is translated into an optical signal and sent through the fiber. The fiber trunkline goes to several distribution hubs , from which multiple fibers fan out to carry the signal to boxes called optical nodes in local communities. At the optical node, the optical signal is translated back into an electrical signal and carried by coaxial cable distribution lines on utility poles, from which cables branch out to
20832-412: The iconoscope (or Emitron) produced an electronic signal and concluded that its real efficiency was only about 5% of the theoretical maximum. They solved this problem by developing and patenting in 1934 two new camera tubes dubbed super-Emitron and CPS Emitron . The super-Emitron was between ten and fifteen times more sensitive than the original Emitron and iconoscope tubes, and, in some cases, this ratio
21018-431: The importance of social conversations and staying connected to family and friends. Since then the role that telecommunications has played in social relations has become increasingly important. In recent years, the popularity of social networking sites has increased dramatically. These sites allow users to communicate with each other as well as post photographs, events and profiles for others to see. The profiles can list
21204-664: The industrial standard for public broadcasting in Europe from 1936 until 1960, when it was replaced by the vidicon and plumbicon tubes. Indeed, it represented the European tradition in electronic tubes competing against the American tradition represented by the image orthicon. The German company Heimann produced the Superikonoskop for the 1936 Berlin Olympic Games, later Heimann also produced and commercialized it from 1940 to 1955; finally
21390-434: The invention of the first working transistor at Bell Labs , Sony founder Masaru Ibuka predicted in 1952 that the transition to electronic circuits made of transistors would lead to smaller and more portable television sets. The first fully transistorized, portable solid-state television set was the 8-inch Sony TV8-301 , developed in 1959 and released in 1960. This began the transformation of television viewership from
21576-456: The jack in the wall is attached to the input of the box, and an output cable from the box is attached to the television, usually the RF-IN or composite input on older TVs. Since the set-top box only decodes the single channel that is being watched, each television in the house requires a separate box. Some unencrypted channels, usually traditional over-the-air broadcast networks, can be displayed without
21762-401: The last holdout among daytime network programs converted to color, resulting in the first completely all-color network season. Early color sets were either floor-standing console models or tabletop versions nearly as bulky and heavy, so in practice they remained firmly anchored in one place. GE 's relatively compact and lightweight Porta-Color set was introduced in the spring of 1966. It used
21948-464: The last of these had converted to color. By the early 1980s, B&W sets had been pushed into niche markets, notably low-power uses, small portable sets, or for use as video monitor screens in lower-cost consumer equipment. By the late 1980s, even these last holdout niche B&W environments had inevitably shifted to color sets. Digital television (DTV) is the transmission of audio and video by digitally processed and multiplexed signals, in contrast to
22134-486: The late 1980s, cable-only signals outnumbered broadcast signals on cable systems, some of which by this time had expanded beyond 35 channels. By the mid-1980s in Canada, cable operators were allowed by the regulators to enter into distribution contracts with cable networks on their own. By the 1990s, tiers became common, with customers able to subscribe to different tiers to obtain different selections of additional channels above
22320-675: The latter being mainly used in legal contexts. The abbreviation CATV is used in the US for cable television and originally stood for community antenna television , from cable television's origins in 1948; in areas where over-the-air TV reception was limited by distance from transmitters or mountainous terrain, large community antennas were constructed, and cable was run from them to individual homes. In 1968, 6.4% of Americans had cable television. The number increased to 7.5% in 1978. By 1988, 52.8% of all households were using cable. The number further increased to 62.4% in 1994. To receive cable television at
22506-552: The management of telecommunication and broadcasting. The history of broadcasting discusses some debates in relation to balancing conventional communication such as printing and telecommunication such as radio broadcasting. The onset of World War II brought on the first explosion of international broadcasting propaganda. Countries, their governments, insurgents, terrorists, and militiamen have all used telecommunication and broadcasting techniques to promote propaganda. Patriotic propaganda for political movements and colonization started
22692-423: The maximum number of channels that could be broadcast in one city was 7: channels 2, 4, either 5 or 6, 7, 9, 11 and 13, as receivers at the time were unable to receive strong (local) signals on adjacent channels without distortion. (There were frequency gaps between 4 and 5, and between 6 and 7, which allowed both to be used in the same city). As equipment improved, all twelve channels could be utilized, except where
22878-567: The medium into channels according to frequency is called " frequency-division multiplexing ". Another term for the same concept is " wavelength-division multiplexing ", which is more commonly used in optical communications when multiple transmitters share the same physical medium. Another way of dividing a communications medium into channels is to allocate each sender a recurring segment of time (a "time slot", for example, 20 milliseconds out of each second), and to allow each sender to send messages only within its own time slot. This method of dividing
23064-414: The medium into communication channels is called " time-division multiplexing " ( TDM ), and is used in optical fibre communication. Some radio communication systems use TDM within an allocated FDM channel. Hence, these systems use a hybrid of TDM and FDM. The shaping of a signal to convey information is known as modulation . Modulation can be used to represent a digital message as an analogue waveform. This
23250-681: The mid-1930s. In 1936, the BBC broadcast propaganda to the Arab World to partly counter similar broadcasts from Italy, which also had colonial interests in North Africa. Modern political debates in telecommunication include the reclassification of broadband Internet service as a telecommunications service (also called net neutrality ), regulation of phone spam , and expanding affordable broadband access. According to data collected by Gartner and Ars Technica sales of main consumer's telecommunication equipment worldwide in millions of units was: In
23436-486: The mid-1960s, color broadcasting was introduced in the U.S. and most other developed countries. The availability of various types of archival storage media such as Betamax and VHS tapes, LaserDiscs , high-capacity hard disk drives , CDs , DVDs , flash drives , high-definition HD DVDs and Blu-ray Discs , and cloud digital video recorders has enabled viewers to watch pre-recorded material—such as movies—at home on their own time schedule. For many reasons, especially
23622-533: The mid-1960s, thermionic tubes were replaced with the transistor . Thermionic tubes still have some applications for certain high-frequency amplifiers. On 11 September 1940, George Stibitz transmitted problems for his Complex Number Calculator in New York using a teletype and received the computed results back at Dartmouth College in New Hampshire . This configuration of a centralized computer ( mainframe ) with remote dumb terminals remained popular well into
23808-429: The modern era used sounds like coded drumbeats , the blowing of horns , and whistles . Long-distance technologies invented during the 20th and 21st centuries generally use electric power, and include the telegraph , telephone , television , and radio . Early telecommunication networks used metal wires as the medium for transmitting signals. These networks were used for telegraphy and telephony for many decades. In
23994-452: The music store. Telecommunication has also transformed the way people receive their news. A 2006 survey (right table) of slightly more than 3,000 Americans by the non-profit Pew Internet and American Life Project in the United States the majority specified television or radio over newspapers. Telecommunication has had an equally significant impact on advertising. TNS Media Intelligence reported that in 2007, 58% of advertising expenditure in
24180-448: The nearest network newscast. Such stations may use similar on-air branding as that used by the nearby broadcast network affiliate, but the fact that these stations do not broadcast over the air and are not regulated by the FCC, their call signs are meaningless. These stations evolved partially into today's over-the-air digital subchannels, where a main broadcast TV station e.g. NBC 37* would – in
24366-400: The neighbourhood of 94.5 MHz (megahertz) while another radio station can simultaneously broadcast radio waves at frequencies in the neighbourhood of 96.1 MHz. Each radio station would transmit radio waves over a frequency bandwidth of about 180 kHz (kilohertz), centred at frequencies such as the above, which are called the "carrier frequencies" . Each station in this example
24552-408: The old analog cable without a set-top box. To receive digital cable channels on an analog television set, even unencrypted ones, requires a different type of box, a digital television adapter supplied by the cable company or purchased by the subscriber. Another new distribution method that takes advantage of the low cost high quality DVB distribution to residential areas, uses TV gateways to convert
24738-464: The original Campbell-Swinton's selenium-coated plate. Although others had experimented with using a cathode-ray tube as a receiver, the concept of using one as a transmitter was novel. The first cathode-ray tube to use a hot cathode was developed by John B. Johnson (who gave his name to the term Johnson noise ) and Harry Weiner Weinhart of Western Electric , and became a commercial product in 1922. In 1926, Hungarian engineer Kálmán Tihanyi designed
24924-456: The phosphors deposited on their outside faces instead of Baird's 3D patterning on a flat surface. The Penetron used three layers of phosphor on top of each other and increased the power of the beam to reach the upper layers when drawing those colors. The Chromatron used a set of focusing wires to select the colored phosphors arranged in vertical stripes on the tube. One of the great technical challenges of introducing color broadcast television
25110-565: The possibility of a digital television signal. This breakthrough was of such significance that the FCC was persuaded to delay its decision on an ATV standard until a digitally-based standard could be developed. Telecommunications Telecommunication , often used in its plural form or abbreviated as telecom , is the transmission of information with an immediacy comparable to face-to-face communication. As such, slow communications technologies like postal mail and pneumatic tubes are excluded from
25296-515: The presence or absence of an atmosphere between the two. Radio waves travel through a perfect vacuum just as easily as they travel through air, fog, clouds, or any other kind of gas. The other meaning of the term "channel" in telecommunications is seen in the phrase communications channel , which is a subdivision of a transmission medium so that it can be used to send multiple streams of information simultaneously. For example, one radio station can broadcast radio waves into free space at frequencies in
25482-504: The programming at the headend (the individual channels, which are distributed nationally, also have their own nationally oriented commercials). Modern cable systems are large, with a single network and headend often serving an entire metropolitan area . Most systems use hybrid fiber-coaxial (HFC) distribution; this means the trunklines that carry the signal from the headend to local neighborhoods are optical fiber to provide greater bandwidth and also extra capacity for future expansion. At
25668-451: The programming without cost. Later, the cable operators began to carry FM radio stations, and encouraged subscribers to connect their FM stereo sets to cable. Before stereo and bilingual TV sound became common, Pay-TV channel sound was added to the FM stereo cable line-ups. About this time, operators expanded beyond the 12-channel dial to use the midband and superband VHF channels adjacent to
25854-505: The public at this time, viewing of the color field tests was restricted to RCA and CBS engineers and the invited press. The War Production Board halted the manufacture of television and radio equipment for civilian use from 22 April 1942 to 20 August 1945, limiting any opportunity to introduce color television to the general public. As early as 1940, Baird had started work on a fully electronic system he called Telechrome . Early Telechrome devices used two electron guns aimed at either side of
26040-476: The range of reception for early cable-ready TVs and VCRs. However, once consumer sets had the ability to receive all 181 FCC allocated channels, premium broadcasters were left with no choice but to scramble. The descrambling circuitry was often published in electronics hobby magazines such as Popular Science and Popular Electronics allowing anybody with anything more than a rudimentary knowledge of broadcast electronics to be able to build their own and receive
26226-511: The receiver, a type of Kerr cell modulated the light, and a series of differently angled mirrors attached to the edge of a rotating disc scanned the modulated beam onto the display screen. A separate circuit regulated synchronization. The 8x8 pixel resolution in this proof-of-concept demonstration was just sufficient to clearly transmit individual letters of the alphabet. An updated image was transmitted "several times" each second. In 1911, Boris Rosing and his student Vladimir Zworykin created
26412-709: The relationship as causal. Because of the economic benefits of good telecommunication infrastructure, there is increasing worry about the inequitable access to telecommunication services amongst various countries of the world—this is known as the digital divide . A 2003 survey by the International Telecommunication Union (ITU) revealed that roughly a third of countries have fewer than one mobile subscription for every 20 people and one-third of countries have fewer than one land-line telephone subscription for every 20 people. In terms of Internet access, roughly half of all countries have fewer than one out of 20 people with Internet access. From this information, as well as educational data,
26598-415: The reproducer) marked the start of the end for mechanical systems as the dominant form of television. Mechanical television, despite its inferior image quality and generally smaller picture, would remain the primary television technology until the 1930s. The last mechanical telecasts ended in 1939 at stations run by a lot of public universities in the United States. In 1897, English physicist J. J. Thomson
26784-561: The resolution of the color information to conserve bandwidth. As black-and-white televisions could receive the same transmission and display it in black-and-white, the color system adopted is [backwards] "compatible." ("Compatible Color," featured in RCA advertisements of the period, is mentioned in the song " America ," of West Side Story , 1957.) The brightness image remained compatible with existing black-and-white television sets at slightly reduced resolution. In contrast, color televisions could decode
26970-553: The results of some "not very successful experiments" he had conducted with G. M. Minchin and J. C. M. Stanton. They had attempted to generate an electrical signal by projecting an image onto a selenium-coated metal plate that was simultaneously scanned by a cathode ray beam. These experiments were conducted before March 1914, when Minchin died, but they were later repeated by two different teams in 1937, by H. Miller and J. W. Strange from EMI , and by H. Iams and A. Rose from RCA . Both teams successfully transmitted "very faint" images with
27156-449: The signal to individual television receivers. Alternatively, television signals are distributed by coaxial cable or optical fiber , satellite systems, and, since the 2000s, via the Internet. Until the early 2000s, these were transmitted as analog signals, but a transition to digital television was expected to be completed worldwide by the late 2010s. A standard television set consists of multiple internal electronic circuits , including
27342-418: The signals are typically encrypted on modern digital cable systems, and the set-top box must be activated by an activation code sent by the cable company before it will function, which is only sent after the subscriber signs up. If the subscriber fails to pay their bill, the cable company can send a signal to deactivate the subscriber's box, preventing reception. There are also usually upstream channels on
27528-575: The significance of the Bell Labs demonstration: "It was, in fact, the best demonstration of a mechanical television system ever made to this time. It would be several years before any other system could even begin to compare with it in picture quality." In 1928, WRGB , then W2XB, was started as the world's first television station. It broadcast from the General Electric facility in Schenectady, NY . It
27714-630: The spectrum of colors at the transmitting end and could not have worked as he described it. Another inventor, Hovannes Adamian , also experimented with color television as early as 1907. The first color television project is claimed by him, and was patented in Germany on 31 March 1908, patent No. 197183, then in Britain, on 1 April 1908, patent No. 7219, in France (patent No. 390326) and in Russia in 1910 (patent No. 17912). Scottish inventor John Logie Baird demonstrated
27900-403: The subscriber's residence, the company's service drop cable is connected to cables distributing the signal to different rooms in the building. At each television, the subscriber's television or a set-top box provided by the cable company translates the desired channel back to its original frequency ( baseband ), and it is displayed onscreen. Due to widespread cable theft in earlier analog systems,
28086-544: The system was improved further by eliminating a motor generator so that his television system had no mechanical parts. That year, Farnsworth transmitted the first live human images with his system, including a three and a half-inch image of his wife Elma ("Pem") with her eyes closed (possibly due to the bright lighting required). Meanwhile, Vladimir Zworykin also experimented with the cathode-ray tube to create and show images. While working for Westinghouse Electric in 1923, he began to develop an electronic camera tube. However, in
28272-511: The telephone including Antonio Meucci , Philipp Reis , Elisha Gray and Alexander Graham Bell , inventors of radio Edwin Armstrong and Lee de Forest , as well as inventors of television like Vladimir K. Zworykin , John Logie Baird and Philo Farnsworth . Since the 1960s, the proliferation of digital technologies has meant that voice communications have gradually been supplemented by data. The physical limitations of metallic media prompted
28458-412: The telephone system were originally advertised with an emphasis on the practical dimensions of the device (such as the ability to conduct business or order home services) as opposed to the social dimensions. It was not until the late 1920s and 1930s that the social dimensions of the device became a prominent theme in telephone advertisements. New promotions started appealing to consumers' emotions, stressing
28644-625: The television. He published an article on "Motion Pictures by Wireless" in 1913, transmitted moving silhouette images for witnesses in December 1923, and on 13 June 1925, publicly demonstrated synchronized transmission of silhouette pictures. In 1925, Jenkins used the Nipkow disk and transmitted the silhouette image of a toy windmill in motion over a distance of 5 miles (8 km), from a naval radio station in Maryland to his laboratory in Washington, D.C., using
28830-487: The term dates back to 1900, when the Russian scientist Constantin Perskyi used it in a paper that he presented in French at the first International Congress of Electricity, which ran from 18 to 25 August 1900 during the International World Fair in Paris. The anglicized version of the term is first attested in 1907, when it was still "...a theoretical system to transmit moving images over telegraph or telephone wires ". It
29016-609: The then-newly discovered phenomenon of radio waves , demonstrating, by 1901, that they could be transmitted across the Atlantic Ocean. This was the start of wireless telegraphy by radio. On 17 December 1902, a transmission from the Marconi station in Glace Bay, Nova Scotia, Canada , became the world's first radio message to cross the Atlantic from North America. In 1904, a commercial service
29202-558: The tube throughout each scanning cycle. The device was first described in a patent application he filed in Hungary in March 1926 for a television system he called "Radioskop". After further refinements included in a 1928 patent application, Tihanyi's patent was declared void in Great Britain in 1930, so he applied for patents in the United States. Although his breakthrough would be incorporated into
29388-532: The upstream speed to 31.2 Kbp/s and prevented the always-on convenience broadband internet typically provides. Many large cable systems have upgraded or are upgrading their equipment to allow for bi-directional signals, thus allowing for greater upload speed and always-on convenience, though these upgrades are expensive. In North America , Australia and Europe , many cable operators have already introduced cable telephone service, which operates just like existing fixed line operators. This service involves installing
29574-509: The use of a CRT as a display device. The Braun tube became the foundation of 20th century television. In 1906 the Germans Max Dieckmann and Gustav Glage produced raster images for the first time in a CRT. In 1907, Russian scientist Boris Rosing used a CRT in the receiving end of an experimental video signal to form a picture. He managed to display simple geometric shapes onto the screen. In 1908, Alan Archibald Campbell-Swinton ,
29760-490: The voltages and electric currents in them, and free space for communications using visible light , infrared waves, ultraviolet light , and radio waves . Coaxial cable types are classified by RG type or "radio guide", terminology derived from World War II. The various RG designations are used to classify the specific signal transmission applications. This last channel is called the "free space channel". The sending of radio waves from one place to another has nothing to do with
29946-439: The wartime purposes of aircraft and land communication, radio navigation, and radar. Development of stereo FM broadcasting of radio began in the 1930s in the United States and the 1940s in the United Kingdom, displacing AM as the dominant commercial standard in the 1970s. On March 25, 1925, John Logie Baird demonstrated the transmission of moving pictures at the London department store Selfridges . Baird's device relied upon
30132-483: The widespread adoption of television. On 7 September 1927, U.S. inventor Philo Farnsworth 's image dissector camera tube transmitted its first image, a simple straight line, at his laboratory at 202 Green Street in San Francisco. By 3 September 1928, Farnsworth had developed the system sufficiently to hold a demonstration for the press. This is widely regarded as the first electronic television demonstration. In 1929,
30318-428: The work of Nipkow and others. However, it was not until 1907 that developments in amplification tube technology by Lee de Forest and Arthur Korn , among others, made the design practical. The first demonstration of the live transmission of images was by Georges Rignoux and A. Fournier in Paris in 1909. A matrix of 64 selenium cells, individually wired to a mechanical commutator , served as an electronic retina . In
30504-456: The world's first color transmission on 3 July 1928, using scanning discs at the transmitting and receiving ends with three spirals of apertures, each spiral with filters of a different primary color, and three light sources at the receiving end, with a commutator to alternate their illumination. Baird also made the world's first color broadcast on 4 February 1938, sending a mechanically scanned 120-line image from Baird's Crystal Palace studios to
30690-538: The world's first public demonstration of an all-electronic television system, using a live camera, at the Franklin Institute of Philadelphia on 25 August 1934 and for ten days afterward. Mexican inventor Guillermo González Camarena also played an important role in early television. His experiments with television (known as telectroescopía at first) began in 1931 and led to a patent for the "trichromatic field sequential system" color television in 1940. In Britain,
30876-418: The world's gross domestic product (GDP). Modern telecommunication is founded on a series of key concepts that experienced progressive development and refinement in a period of well over a century: Telecommunication technologies may primarily be divided into wired and wireless methods. Overall, a basic telecommunication system consists of three main parts that are always present in some form or another: In
31062-455: Was "...formed in English or borrowed from French télévision ." In the 19th century and early 20th century, other "...proposals for the name of a then-hypothetical technology for sending pictures over distance were telephote (1880) and televista (1904)." The abbreviation TV is from 1948. The use of the term to mean "a television set " dates from 1941. The use of the term to mean "television as
31248-453: Was able, in his three well-known experiments, to deflect cathode rays, a fundamental function of the modern cathode-ray tube (CRT). The earliest version of the CRT was invented by the German physicist Ferdinand Braun in 1897 and is also known as the "Braun" tube. It was a cold-cathode diode , a modification of the Crookes tube , with a phosphor -coated screen. Braun was the first to conceive
31434-507: Was considerably greater. It was used for outside broadcasting by the BBC, for the first time, on Armistice Day 1937, when the general public could watch on a television set as the King laid a wreath at the Cenotaph. This was the first time that anyone had broadcast a live street scene from cameras installed on the roof of neighboring buildings because neither Farnsworth nor RCA would do the same until
31620-632: Was designed in the Soviet Union in 1944 and became a national standard in 1946. The first broadcast in 625-line standard occurred in Moscow in 1948. The concept of 625 lines per frame was subsequently implemented in the European CCIR standard. In 1936, Kálmán Tihanyi described the principle of plasma display , the first flat-panel display system. Early electronic television sets were large and bulky, with analog circuits made of vacuum tubes . Following
31806-483: Was during the Spanish Armada , when a beacon chain relayed a signal from Plymouth to London . In 1792, Claude Chappe , a French engineer, built the first fixed visual telegraphy system (or semaphore line ) between Lille and Paris. However semaphore suffered from the need for skilled operators and expensive towers at intervals of ten to thirty kilometres (six to nineteen miles). As a result of competition from
31992-407: Was established to transmit nightly news summaries to subscribing ships, which incorporated them into their onboard newspapers. World War I accelerated the development of radio for military communications . After the war, commercial radio AM broadcasting began in the 1920s and became an important mass medium for entertainment and news. World War II again accelerated the development of radio for
32178-462: Was later reconfirmed, according to Article 1.3 of the ITU Radio Regulations , which defined it as "Any transmission , emission or reception of signs, signals, writings, images and sounds or intelligence of any nature by wire , radio, optical, or other electromagnetic systems". Homing pigeons have been used throughout history by different cultures. Pigeon post had Persian roots and
32364-554: Was later used by the Romans to aid their military. Frontinus claimed Julius Caesar used pigeons as messengers in his conquest of Gaul . The Greeks also conveyed the names of the victors at the Olympic Games to various cities using homing pigeons. In the early 19th century, the Dutch government used the system in Java and Sumatra . And in 1849, Paul Julius Reuter started a pigeon service to fly stock prices between Aachen and Brussels ,
32550-427: Was limited, meaning frequencies over 250 MHz were difficult to transmit to distant portions of the coaxial network, and UHF channels could not be used at all. To expand beyond 12 channels, non-standard midband channels had to be used, located between the FM band and Channel 7, or superband beyond Channel 13 up to about 300 MHz; these channels initially were only accessible using separate tuner boxes that sent
32736-559: Was mainly used to relay terrestrial channels in geographical areas poorly served by terrestrial television signals. Cable television began in the United States as a commercial business in 1950s. The early systems simply received weak ( broadcast ) channels, amplified them, and sent them over unshielded wires to the subscribers, limited to a community or to adjacent communities. The receiving antenna would be taller than any individual subscriber could afford, thus bringing in stronger signals; in hilly or mountainous terrain it would be placed at
32922-408: Was more reliable and visibly superior. This was the world's first regular "high-definition" television service. The original U.S. iconoscope was noisy, had a high ratio of interference to signal, and ultimately gave disappointing results, especially compared to the high-definition mechanical scanning systems that became available. The EMI team, under the supervision of Isaac Shoenberg , analyzed how
33108-403: Was not until the 1990s that digital television became possible. Digital television was previously not practically possible due to the impractically high bandwidth requirements of uncompressed digital video , requiring around 200 Mbit/s for a standard-definition television (SDTV) signal, and over 1 Gbit/s for high-definition television (HDTV). A digital television service
33294-476: Was of little practical value because it relied on the electrophonic effect requiring users to place the receiver in their mouths to "hear". The first commercial telephone services were set up by the Bell Telephone Company in 1878 and 1879 on both sides of the Atlantic in the cities of New Haven and London. In 1894, Italian inventor Guglielmo Marconi began developing a wireless communication using
33480-409: Was one by Maurice Le Blanc in 1880 for a color system, including the first mentions in television literature of line and frame scanning. Polish inventor Jan Szczepanik patented a color television system in 1897, using a selenium photoelectric cell at the transmitter and an electromagnet controlling an oscillating mirror and a moving prism at the receiver. But his system contained no means of analyzing
33666-834: Was partly mechanical, with a disc made of red, blue, and green filters spinning inside the television camera at 1,200 rpm and a similar disc spinning in synchronization in front of the cathode-ray tube inside the receiver set. The system was first demonstrated to the Federal Communications Commission (FCC) on 29 August 1940 and shown to the press on 4 September. CBS began experimental color field tests using film as early as 28 August 1940 and live cameras by 12 November. NBC (owned by RCA) made its first field test of color television on 20 February 1941. CBS began daily color field tests on 1 June 1941. These color systems were not compatible with existing black-and-white television sets , and, as no color television sets were available to
33852-516: Was popularly known as " WGY Television." Meanwhile, in the Soviet Union , Leon Theremin had been developing a mirror drum-based television, starting with 16 lines resolution in 1925, then 32 lines, and eventually 64 using interlacing in 1926. As part of his thesis, on 7 May 1926, he electrically transmitted and then projected near-simultaneous moving images on a 5-square-foot (0.46 m) screen. By 1927 Theremin had achieved an image of 100 lines,
34038-511: Was proposed in 1986 by Nippon Telegraph and Telephone (NTT) and the Ministry of Posts and Telecommunication (MPT) in Japan, where there were plans to develop an "Integrated Network System" service. However, it was not possible to implement such a digital television service practically until the adoption of DCT video compression technology made it possible in the early 1990s. In the mid-1980s, as Japanese consumer electronics firms forged ahead with
34224-499: Was the desire to conserve bandwidth , potentially three times that of the existing black-and-white standards, and not use an excessive amount of radio spectrum . In the United States, after considerable research, the National Television Systems Committee approved an all-electronic system developed by RCA , which encoded the color information separately from the brightness information and significantly reduced
34410-497: Was unable or unwilling to introduce evidence of a working model of his tube that was based on his 1923 patent application. In September 1939, after losing an appeal in the courts and being determined to go forward with the commercial manufacturing of television equipment, RCA agreed to pay Farnsworth US$ 1 million over ten years, in addition to license payments, to use his patents. In 1933, RCA introduced an improved camera tube that relied on Tihanyi's charge storage principle. Called
34596-417: Was varied in proportion to the brightness of each spot on the image. As each hole in the disk passed by, one scan line of the image was reproduced. Baird's disk had 30 holes, producing an image with only 30 scan lines, just enough to recognize a human face. In 1927, Baird transmitted a signal over 438 miles (705 km) of telephone line between London and Glasgow . Baird's original 'televisor' now resides in
#200799